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It is well documented that a silyl group significantly
stabilizes a carbocation at the â-position by σ-π orbital
interaction,1 and various synthetic reactions have been
developed on the basis of this effect.2 While these
reactions usually proceed through desilylation of the
â-silyl cationic intermediates to afford olefinic com-
pounds, notable exceptions involving a nucleophilic at-
tack on the cationic carbon rather than on silicon have
recently been reported (Scheme 1).3 Although the latter
reaction path would constitute a new methodology for
control of stereochemistry by neighboring-group partici-
pation, there are few examples demonstrating the ster-
eochemical features in this type of reaction.4
In order to induce stereoselective introduction of a

nucleophile, allylsilane 1 with a 1-oxa-2-silacyclopentane
skeleton5 was designed as a precursor of a â-silyl cationic
species. We envisioned that the cyclic structure would
contribute to stabilizing the cationic intermediate as well
as to fixing the conformation. Allylsilanes 1a-1c were
prepared as shown in Scheme 2.
Allyl sulfides 2 containing a dialkylsiloxy moiety were

treated with lithium dispersion in the presence of a
catalytic amount of 4,4′-di-tert-butylbiphenyl (DBB).6
Intramolecular migration of the silyl group7 took place
regio- and stereoselectively to afford a hydroxyallylsilane.
Cyclization reaction of the alcohol proceeded smoothly
under the influence of aqueous NaOH or I2/2,6-lutidine.

First, the solvolysis reaction of epoxides8 derived from
allylsilanes 1 was planned to confirm the effect of σ-π
participation by silicon, which would promote regiose-
lective substitution at the â-position with retention of the
configuration. PM3 calculations9 on allylsilane 1b were
performed to estimate diastereofacial selectivity of the
epoxidation reaction (Figure 1). The results indicate that
conformer C-2 is 1.3 kcal/mol more stable than C-1, and
electrophiles are expected to attack the double bond of
C-2 from the opposite side of the bulky tert-butyl group.
Although the oxidation reaction of 1a with Oxone10 in

acetone gave a complex mixture, 1b afforded the desired
epoxide 3b as a ca. 3:1 mixture of diastereomers. Sur-
prisingly, treatment of the crude product with silica gel
resulted in formation of six-membered silyl ether 4b and
eight-membered product 5b (eq 1). Furthermore, seven-

membered silyl ether 6b along with allyl bromide 7bwere
formed by reaction of 1b with N-bromosuccinimide
(NBS)11 in acetone-water (eq 2). It should be noted that
both of the ring expansion products 4b and 6b were
obtained in diastereomerically pure form,12 and the
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Scheme 1

Scheme 2. Diastereoselective Synthesis of Cyclic
Allylsilanes

4206 J. Org. Chem. 1997, 62, 4206-4207

S0022-3263(97)00351-4 CCC: $14.00 © 1997 American Chemical Society



geometry of olefinic products 5b and 7b was controlled
as E and Z, respectively.
The mechanism and stereochemistry of these reactions

could be explained by assuming σ-π orbital interaction
by silicon as shown in Scheme 3. The major diastereomer
(A) of both epoxide and the epibromonium ion intermedi-
ate, which was anticipated to arise from the stable
conformer C-2 in Figure 1, undergoes cleavage of the
three-membered ring to form a â-silyl cationic species.
Because of the neighboring-group participation, a nu-
cleophile should be introduced stereoselectively either at
the â-position of X′ (OH or Br) directly or at the γ-position
via rearrangement of silicon.3a,b,d,f The site selectivity
observed here may be attributable to the greater stability
of the six-membered ring than that of the five-membered
ring.13 In the reaction with NBS, the six-membered
bromo alcohol seems to be labile and leads to a seven-
membered diol through a similar ring expansion reaction
involving participation by silicon. As the seven-mem-
bered ring is not energetically more favored than the six-
membered ring, the site selectivity in this second hy-
droxylation step should be rationalized by the Mar-
kovnikov rule.
On the other hand, a similar ring expansion reaction

of the minor diastereomer (B) would give a six-membered
intermediate that is relatively unstable due to a hy-
droxymethyl or bromomethyl group on the axial position.
Therefore, alkenes 5 and 7 were formed via intramolecu-
lar or intermolecular attack on silicon by oxygen followed
by cleavage of the C-Si bond. It is noteworthy that the
geometry of these olefinic products is completely consis-
tent with that expected to arise from B.
Next, a new method for stereoselective synthesis of

polyols using these ring expansion reactions was devel-

oped. Since initial attempts for oxidative cleavage of the
carbon-silicon bond14 of 4b or 6b were unsuccessful, the
analogous compounds with aromatic substituents on
silicon were prepared as shown in eqs 3 and 4. Oxidation

of allylsilane 1c afforded epoxide 3c as a single isomer,
which underwent a ring expansion reaction under the
influence of dichloroacetic acid. Seven-membered diol 8
was also prepared from diol 4c through selective tosyla-
tion followed by hydrolysis.
Finally, treatment of the corresponding acetonides 9

and 6c with NBS in methanol followed by aqueous
alkaline H2O2 yielded the desired tetrol derivatives 10
and 11 in diastereomerically pure form.

In conclusion, a novel ring expansion reaction involving
stereoselective introduction of a hydroxy group controlled
by neighboring-group participation of silicon was ac-
complished. We are currently investigating ring expan-
sion reactions of other cyclic allylsilanes and the appli-
cation to stereoselective synthesis of polyols.
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Figure 1. Conformational analysis of 1b based on PM3
calculations.

Scheme 3. Proposed Reaction Mechanism of the
Ring Expansion Reactions
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